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Introduction: 

 

This is the full length version of the first of a four-article series on low noise synthesizer 

design using the latest synthesizer IC’s and supporting parts.  Recent years have seen 

major changes in the frequency synthesis art, driven by a combination of advancing RFIC 

design and higher frequency crystal references, that are fundamentally changing the 

frequency sources field.  Ultra-low noise discrete VCO’s, which have been the heart of 

low noise synthesizers for decades, now find themselves challenged by integrated VCO’s 

on the same die as the synthesizer.  The best discrete VCO’s still enjoy a 20-30dB phase 

noise superiority over the best integrated VCO’s, but IC companies are conducting an 

asymmetric battle to dominate the market with full integration based not on the best VCO 

noise, but on architectural innovations that often render free running VCO noise less 

important.  This is achieved by putting good if not great VCO’s on die with SiGe 

BiCMOS processes and MEMS inductor resonators, and then suppressing that fairly good 

noise down to a very low level via feedback.   

 

Instead of synthesizer design using a typical strategy of the narrowest loop bandwidth 

that frequency change time allows in order to keep the synthesizer from degrading a high 

quality VCO, the strategy has often totally altered to having a high bandwidth loop that 

can suppress noise over a wide frequency range, down to the level enabled by recent 

ultra-low noise dividers and charge pumps on the IC’s.  For lowest total integrated noise 

starting from a fairly low starting frequency inside the loop bandwidth, this new strategy 

is superior.  The older standard of a low loop bandwidth usually only yields lowest noise 

if spur noise is a problem, or if the starting point of the frequency noise range of interest 

is beyond the loop bandwidth.   

 

When using the wide bandwidth strategy, the result is that the best integrated VCO 

synthesizers usually have the best noise inside the loop bandwidth, as they generally have 

a 4-7 dB less PLL noise (divider and charge pump noise) than the best synthesizer chips 

that work with external VCO’s, and also benefit from higher frequency operation than the 

best discrete VCO’s are currently providing (to be explained in article 2). The best 

discrete VCO synthesizers still have lower noise past the loop bandwidth, and can deliver 

that for lower power.  See Figure 1 for a conceptual illustration.  This will be expanded in 

article 2.   

 

The two methods are now fighting it out for design wins based on their relative 

advantages and how important those advantages are in different radio systems.  If discrete 
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VCO’s are moved up in frequency while maintaining superior normalized phase noise, 

and had the benefit of similar divider and charge pump noise, they would have better 

noise in-band also, and it remains to be seen if that situation will develop.  That 

possibility is explored in article 2.   

 

 
Figure 1:  Suppression of noise inside the loop bandwidth has become a key technique 

that is altering the technology of frequency sources.  When the loop bandwidth exceeds 

critical frequency offsets such as the distance between channels, it allows meeting key 

system noise specifications such as adjacent channel rejection using fully integrated 

VCO’s.   

 

There are many entire books devoted to frequency synthesizers, so obviously we can only 

cover the most important points here.  It will take four articles to cover the basics of 

modern frequency synthesis, its design methods, and the resulting parts choices and 

performance results.  This first article will review simple historical and modern more 

advanced design methods in order to set the stage.  The second article will extend the 

modern methods to include noise and its minimization.  In the noise article the methods 

used by modern synthesizers to allow and profit from on-die VCO’s and to reduce noise 

to new levels will be presented, along with description of when the discrete VCO 

approach may be superior.  The third article will review the performance and features of 

available subsystems and parts that go in the synthesizer system, practical noise sources 

to beware of, and modern software tools of PLL design.  The fourth and final article will 

put all that together with phase noise specification methods for applications that demand 

the lowest noise, and practical examples of state-of-the-art low noise single loop 

synthesizer designs.  

 

Free running VCO 

phase noise

Wideband 

PLL phase 

noise

Narrowband 

PLL phase 

noise

LdB(foffset)

foffset
Wide

Bandwidth

Narrow

Bandwidth

PLL floor

Suppression of VCO 

phase noise inside 

BW of wide loop



3 

History: 

 

A brief historical review helps in understanding where we are now.  The age of accurate 

and low noise frequency sources began with the invention of the crystal oscillator in 1917 

and the practical quartz crystal oscillator in 1921.  The concept of using a piezoelectric 

rock (the quartz crystal) with its astonishingly high resonator Q and accuracy to stabilize 

an oscillator is one of the greatest inventions in radio, comparable to the superheterodyne 

receiver in its impact. World War II really saw quartz frequency control explode into 

high usage and impact, where it was regarded as critical to the Allied Powers (Ref. 1) as 

it allowed reliable narrowband communications.  Quartz crystal oscillators have since 

become ubiquitous in modern electronics, with over 2 billion units manufactured 

annually, and it is no exaggeration to say that the modern communications industry could 

not exist without them.   

 

However, though they are slightly tunable, quartz crystal oscillators are effectively single 

frequency sources.  Crystal oscillators are also limited in their frequency range, with 

upper limits of less than 1 GHz and typical or high performance upper limits of a few 

hundred MHz.  Until quite recently a standard frequency for high quality crystal 

references was 10MHz, but now 100MHz is commonly available in ovenized form and is 

becoming available in lower cost and power voltage controlled temperature compensated 

(VCTCXO) form. It will be seen how these higher reference frequencies have proven 

very useful in reducing synthesizer noise. See modern references 2 and 3 for detailed 

presentation of crystal oscillator design and performance.   

 

To provide frequency tuning before the age of synthesizers, free running “variable 

frequency oscillators” (VFO’s) were used.  The problem with them is frequency error and 

drift.  To contain that drift took exquisite mechanical design using heavy and expensive 

chassis’s.  Many of these products are quite beautiful physically, as much fine furniture 

as electronic appliances, but the cost for high performance applications was prohibitive.  

Long time radio amateurs will remember that a set of Collins twins (receiver and 

transmitter) was about half the price of a new car.   

 

These practical limits of crystal and free running oscillators motivated the development 

of the PLL (phase locked loop) frequency synthesizer.  The PLL synthesizer is a negative 

feedback control system that steers a high frequency voltage controlled oscillator (VCO) 

to have an output frequency that is a desired exact multiple of a reference frequency 

provided by a crystal oscillator (see Figure 1, which will be explained in more detail 

shortly).  In addition to providing fine frequency stepping at virtually any frequency a 

VCO can provide, the PLL can suppress VCO noise inside the loop bandwidth.  The PLL 

does this by using feedback to “transfer” the accuracy and low noise of its low frequency 

reference to its high frequency output, similarly to how a low noise regulator transfers the 

accuracy and low noise of its voltage reference to its high power output.  Synthesizers 

can also add noise to a free running oscillator or suffer limits to how much they can 

suppress VCO noise with the noise of their loop filters and internal dividers and charge 

pumps, but it will be explained in article 2 how modern “fractional N sigma delta” 
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synthesizers have greatly reduced these noises.   Modern PLL synthesizers are also 

conveniently software controlled as to operating frequency and many other parameters.   

 

PLL’s were first invented in the 1930’s, but the first U.S. patent for a PLL synthesizer 

was not issued until 1971 (Ref. 4).  Synthesizer design through the 1980’s typically 

consisted of a discrete VCO and a set of two or more integrated circuits to perform 

frequency division and phase detection.  The work was sufficiently new that through the 

1980’s and into the 1990’s theses and dissertations based on what we would today 

consider basic techniques were still considered as academically innovative research 

topics (Refs. 5 and 6).  The first single chip synthesizer IC’s appeared in the early to mid 

1990’s.  These still required an off-die VCO, and typically had only “integer N” dividers 

that stepped the VCO frequency in multiples of the divided reference frequency as 

provided to the phase detector.  They did feature handy digital control ports and an on-die 

“charge pump” output that usually eliminated the need for an op amp based active loop 

filter and that drives phase error and thus phase detector pulse width to approach zero.  

The first of these the author designed with were from Fujitsu, at the time astonishing 

single chip devices consuming only a few mA that allowed GHz frequency sources with 

the luxury of firmware control.  National Semiconductor soon offered pin compatible 

versions and excellent applications support of historical and modern significance, which 

will be covered here shortly.   

 

The design methods of the 1970’s to the 1990’s emphasized what is called the “second 

order” PLL with control theory “normalized form” second order equations and loop 

parameters (to be explained shortly).  This form is handy for easy calculations and for 

calculation of time domain performance like settling time.  However, as early as the late 

1970’s (Ref. 7) higher order loops with more filter poles and accurate mathematical 

analyses were being promoted to better filter off digital phase detector noise terms that 

modulated the VCO and generated noise sidebands at multiples of the divided reference 

frequency.   These were expanded in published work of the 1980’s (Ref. 8, and Ref. 9 pp. 

32-42), but were still somewhat limited in use, with the second order normalized form 

with sometimes an extra pole added empirically being the dominant design method.  

Following the publication of National Semiconductor App Note 1001 in 1996 (Ref 12) by 

National Semiconductor engineer Bill Keese at the beginning of the internet age with 

such materials easily disseminated, and the excellent modern book of his co-worker Dean 

Banerjee (Ref. 13) in 1998, use of higher order loop filters and theoretically sound 

methods to design with them appeared to become much more common.  The use of such 

high order filters combined with precise control of loop bandwidth and phase margin will 

be referred to here as “modern” design.   

 

The relentless march to higher integration and lower cost has led in recent years to full 

“synthesizer on a chip” IC’s with integrated VCO’s, generally using fractional N sigma 

delta (also called delta sigma) frequency synthesizers that can fine step over small 

fractions of the divided reference frequency.  This allows a much higher reference 

frequency than the required tune step or channel spacing, and thus wider loop bandwidth 

that can suppress the rather high noise of the on-die VCO’s as compared to lower noise 

discrete VCO’s.  The higher integer step and reference frequency of the sigma delta  
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synthesizer also allows a smaller loop frequency divider N, and thus less noise 

multiplication in the loop (to be explained in article 2).  These improvements were 

needed to get better in-loop suppression of free running VCO noise, as despite excellent 

integrated VCO improvements they still have free running noise approximately 20 to 30 

dB inferior to the best external VCO’s.  But, inside the loop bandwidth these IC’s can 

offer excellent noise performance, at the cost of higher noise outside the loop bandwidth 

than a synthesizer using a discrete VCO module can provide.  Another price to be paid is 

high power consumption, as getting acceptable noise in an integrated VCO generally 

takes much higher current than a high-Q discrete VCO.   However, many modern IC’s 

are available that allow use of lower noise off-die VCO’s, and combining modern 

synthesizers with external VCO’s can provide the lowest wideband noise of all for those 

applications that really demand that.  An example of such an application is wide channel 

communications systems like modern cellular base stations, which have demanding 

adjacent channel performance requirements at offset frequencies typically beyond the 

bandwidth of the synthesizer.  At these offsets the free running frequency of the VCO is 

key, and discrete VCO’s have the advantage.   

 

With that history in mind, we may review Figure 1 and proceed to a more theoretical 

understanding of PLL design and noise performance.   

 

Basic PLL Operation and the 2nd Order Normalized Form: 
 

Before the methods of high order design (additional filter poles to suppress noise) are 

presented, it is useful to review the standard second order form of PLL design that is 

presented in most classic text books.  This form leads to quick closed form expressions 

for bandwidth and parts values that are useful as a starting point for higher order designs, 

though the capacitor of higher order forms tends to be around 2X larger to make up for 

the phase shift of the higher poles (allowing the zero resistor more frequency to generate 

phase margin).  This mathematically simpler form is also more easily manipulated to 

develop closed form expressions for important parameters such as pull out range (the 

range of VCO frequency over which the PLL remains in fast settling phase lock mode 

and not the much slower frequency lock mode).  It also allows for important noise 

estimates to be made.  The PLL block diagram of this form is shown in Figure 2. 
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Figure 2: The classic 2nd order PLL in charge pump form.  Units of Ko are in 

rad/sec/volt, and units of Kd are Id/2𝞹 amps/rad, where Id is the datasheet charge pump 

current.   

 

Figure 2 depicts the PLL as a feedback control system where the (divided) phase of the 

VCO is forced to match the (divided) phase of the crystal reference oscillator.  The digital 

dividers are typically under firmware control, and by changing the value of the “N” 

divider the VCO will be forced to step in increments of the divided reference frequency.  

Note that while this circuit embodies digital circuits and time sampling, the sampling rate 

set by the reference frequency will be much higher than the loop bandwidth, and linear 

methods of analysis are accurate in the locked state both for part value selection and 

noise analysis.   

 

The action of this feedback loop is to drive phase error to be constant or zero, which 

results in zero frequency error.  It is a standard feedback loop with one exception that 

may be new to a less experienced RF engineer.  We are used to thinking primarily of 

voltage and current as the feedback quantities, but in addition to those the PLL also treats 

phase and frequency as small signal frequency domain variables.  When seeking lock 

over a wide frequency range, the modern phase/frequency detector (PFD) acts as a 

frequency detector to steer the VCO towards lock.  When in frequency locked loop (FLL)  

mode, the VCO directly converts voltage input to frequency output with no feedback 

phase shift.  Towards the end of the frequency lock mode, the loop transitions to a phase 

detector mode.  When “phase locked” the phase detector is detecting phase as a time 

difference between digital edges, and driving this difference to zero.  Since frequency is 

the time derivative of changing phase (ω = dθ/dt), phase is the integral of frequency.  
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Thus, in phase lock mode, the VCO acts as an integrator of input voltage to output phase.  

Like any integration, this introduces -90 degrees of phase shift.  That is why its transfer 

function is in the form Ko / s, the transfer function of an integrator.  Ko is here given in 

units of rad/sec/volt.  VCO datasheets will normally give Ko in units of MHz/V.  To be 

clear in this article series, we will refer to the Hz/V form of Ko as KHz and the radian form 

as Ko, so Ko = 2𝞹KHz.   

 

Note that with the -90 deg phase shift and the –180 degrees of negative feedback, we 

only have a maximum of 90 degrees of filtering phase shift allowed before -360 degrees 

total would result in instability.  We normally leave a minimum of 40 degrees of “phase 

margin” at the loop bandwidth.  This margin comes from the zero introduced by resistor 

R2.  Keeping the loop stable and with good transient response revolves around controlling 

the loop gain and phase margin, which is done with the loop filter design.  That’s why 

loop filter design will dominate this first article, leading to a large set of design equations 

covering several loop filter forms.        

 

In the first order filter and second order PLL form the filter is the series RC circuit in 

shunt with the charge pump.  The charge pump is a current source that is pulling or 

pushing current for the period of time that the two inputs of the phase detector are 

different.  If R2 were zero, then the charge pump driving C2 would simple act as an 

integrator (the use of the subscript of “2” is in keeping with most literature, where an 

additional capacitor for higher order filtering in parallel with the series RC will have 

subscript “1”).  Since this integrator would have 90 degrees of phase shift, it would use 

up all available phase margin and the loop would be unstable.  Hence the insertion of the 

resistor R2, which in transfer function terms adds a “zero”, but intuitively can be viewed 

as preventing the full 90 degrees of loop filter phase shift that would cause instability.   

 

In practice the 2nd order form borders on unusable with a charge pump PLL. Additional 

poles are usually added beyond the loop BW to provide better filtering of digital noise 

coming out of the phase detector (which is presenting phase error as a series of sharp 

edged, narrow, high frequency pulses of current), as these pulses would create strong 

sidebands spaced off the VCO carrier by multiples of the reference frequency. These 

extra poles create what is called a “high order loop”, usually at least 3rd order and 

sometimes as high as 5th order (the loop order is one more than the filter order due to the 

VCO acting as an integrator).  Though to the author’s knowledge seldom used, there can 

be a need for as high as a 5th order filter and 6th order loop in the case of active loop 

filters, in order to not exceed op amp bandwidth limits. The filtering needed is reduced by 

the fact that in the charge pump form of the PLL, the width of the phase detector output 

pulses is forced to nearly zero since the phase error is forced to zero.  The pulse width is 

only greater than zero as a result of noise and finite turn on and off time in the charge 

pump (current source) output.  This very narrow width (order of one ns and as narrow as 

about 0.5ns) reduces the spur noise and also noise in the current output of the charge 

pump (if pump current is reduced to near zero, current noise in the locked state is reduced 

to near zero).   
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Now we may review basic analysis.  The classic “phase transfer function” of the loop as 

given in older references (such as Refs 14 and 15) is defined here as: 

 

Equation 1:  𝑯𝒄𝒍𝒂𝒔𝒔𝒊𝒄(𝒔) =
𝜽𝒐𝒖𝒕/𝑵

𝜽𝒓𝒆𝒇
 

 

Hclassic(s) is the closed loop transfer function from the reference input on the phase detector 

to the feedback input, usually referred to as simply “H(s)” in classic references.  This 

subscript is used to clearly distinguish from the “H” that is used as part of the open loop 

transfer function in most modern literature.  Hclassic will turn out to be a low pass function, 

and one that is highly indicative of loop locking, tracking, and noise behavior.  From the 

figure above, if we solve for this relationship by “substituting around the loop” using the 

relations established in the figure, we obtain: 

 

Equation 2: 

𝑯𝒄𝒍𝒂𝒔𝒔𝒊𝒄(𝒔) =

𝑲𝒐𝑰𝒑𝒅𝑹
𝟐𝝅𝑵

𝒔 +
𝑲𝒐𝑰𝒑𝒅

𝟐𝝅𝑵𝑪

𝒔𝟐 +
𝑲𝒐𝑰𝒑𝒅𝑹

𝟐𝝅𝑵
𝒔 +

𝑲𝒐𝑰𝒑𝒅

𝟐𝝅𝑵𝑪

 

  

In the above, Ko is in rad/sec/V.  Note this is a low pass expression and it indicates the 

VCO phase and frequency will follow those of the reference out to approximately the 

bandwidth of the loop.  Note also this is the closed loop transfer from the reference input 

to the phase detector to the feedback input of the phase detector.  To get the transfer 

function from the reference input to the VCO output, we would multiply this expression 

by N.   

 

This equation is in a familiar control system form where we may extract standard 

parameters that aid in understanding and in calculations.  The standard normalized form of 

the second order system is given by: 
 

 Equation 3:  𝑯𝒄𝒍𝒂𝒔𝒔𝒊𝒄(𝒔) =
𝟐𝜻𝝎𝒏𝒔+𝝎𝒏

𝟐

𝒔𝟐+𝟐𝜻𝝎𝒏𝒔+𝝎𝒏
𝟐  

  

The two equations are in the same form, and by equating terms we obtain the following 

analysis equations: 

 

Equation 4:  𝝎𝒏 = √
𝑲𝒐𝑰𝒑𝒅 

𝟐𝝅𝑵𝑪
=  √

𝑲𝑯𝒛𝑰𝒑𝒅 

𝑵𝑪
      

 

Equation 5: 𝜻 =
𝑲𝒐𝑰𝒑𝒅𝑹

𝟒𝝅𝑵𝝎𝒏
=  

𝑲𝑯𝒛𝑰𝒑𝒅𝑹

𝟐𝑵𝝎𝒏
 (ζ is the Greek letter “zeta”) 

 

The term ωn is the “natural” frequency, and is close to but generally not equal to the open 

loop bandwidth.   When settling, the transient response “rings down” at the natural 
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frequency.  The term ζ is the “damping factor” and must be greater than zero for stability.  

Normally damping factor is set to about 0.5, which will give about 45 degrees of phase 

margin, or about 0.7 to 1 when an additional filtering pole is added.  Phase margin is a 

function of both natural frequency and damping factor (this will be derived shortly). The 

second order normalized form of the PLL is inherently stable, as the full 360 degree phase 

shift around the loop to be unstable cannot be reached (the circuit architecture forces ζ > 

0), but low damping factors will have a ringing settling response to frequency changes.       
 

Again referring to Figure 2, the common PLL "error transfer function" is defined as: 

 

Equation 6: 𝑯𝒆(𝒔) =
𝜽𝒓𝒆𝒇−(𝜽𝒐𝒖𝒕/𝑵)

𝜽𝒓𝒆𝒇
  

 

Similar analysis shows that He(s) may also be represented in the standard normalized form 

of control theory as: 

 

Equation 7:  𝑯𝒆(𝒔) =
𝒔𝟐

𝒔𝟐+𝟐𝜻𝝎𝒏𝒔+𝝎𝒏
𝟐  

 

He(s) is a high pass function, whereas the phase transfer function Hclassic(s) is low pass.  It 

is quickly shown from above that: 

 

Equation 8:  𝑯𝒆(𝒔) = 𝟏 −  𝑯𝒄𝒍𝒂𝒔𝒔𝒊𝒄(𝒔) 

 

It will turn out that many of the modulation and noise responses of PLLs can be 

conveniently expressed using these functions, which is a great aid in understanding how 

the loop shapes noise.  For example, phase or phase noise variation on the reference input 

to the phase detector will transfer to the VCO output proportional to the phase transfer 

function.  Since phase transfer function is low pass, above the loop bandwidth there will 

be suppression of this noise or modulation.  The suppression of voltage controlled oscillator 

phase noise inside the loop bandwidth will be according to the He(s) function given just 

above, down to the limits of divider noise, charge pump noise, and crystal reference noise 

(to be analyzed in article 2).   

 

From the analysis equations just above we obtain the following design equations: 

 

Equation 9:  𝑪𝟐 =
𝑲𝒐𝑰𝒑𝒅

𝟐𝝅𝑵𝝎𝒏
𝟐  

=
𝑲𝑯𝒛𝑰𝒑𝒅

𝑵𝝎𝒏
𝟐    

 

Equation 10:  𝑹𝟐 =
𝟒𝝅𝑵𝝎𝒏𝜻 

𝑲𝒐𝑰𝒑𝒅
=  

𝟐𝑵𝝎𝒏𝜻 

𝑲𝑯𝒛𝑰𝒑𝒅
≅

𝑵𝝎𝑳 

𝑲𝑯𝒛𝑰𝒑𝒅
    

 

These equations are used to determine R and C based upon chosen values for natural 

frequency and damping factor.  When extra filtering poles are introduced these values will 

change (particularly the capacitor), but they are still very useful starting points and serve 
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well for many approximations such as settling time, pull out range, and finding minimum 

possible thermal noise in the loop filter.  The approximation for R2 is using the approximate 

relationship between loop bandwidth ωL, natural frequency ωn, and damping factor ζ that 

is given later in Equation 23.   

 

For example, a key trend is revealed above about loop filter noise that can worsen VCO 

noise, and how this problem has gotten much better with recent fractional N synthesizers.  

Note that the resistor R value is proportional to the loop divider N and inversely 

proportional to charge pump current Ipd.  In older “integer N” synthesizers (commonly 

used until the early 2000’s) using divided reference frequencies equal to a channel step that 

was typically from 12.5kHz (land mobile) to 200kHz (GSM cellular), N was a large 

number.  For example, for GSM it was about 4500, with synthesizer chip Ipd of typically 

about 5mA, VCO gain KHz of about 20 MHz/V (Ko = 2𝞹KHz), damping factor of 0.5, and 

loop bandwidth of about 20kHz.  This would lead to an R value of 5.65kOhms.  This 

resistance has a noise voltage of about 9.5nV.  This is a relatively large noise voltage 

driving the VCO input and creating phase noise, and it limits phase noise performance to 

about -103 dBc per Hz at the 20kHz loop bandwidth (more technical detail on this noise 

will be given in article 2).  This induced noise is quite a lot higher than the native VCO 

noise of a good quality module, which for that class of equipment in the 1990’s was about 

-115 to -120 dBc/Hz at 20kHz offset.  But, with a modern “fractional N” synthesizer that 

can use a high step of 100MHz and still provide 200kHz channel steps, and a charge pump 

of 10mA, this resistance works out to 5.65 ohms.  This has a noise voltage of just 0.30nV, 

with the induced phase noise limit at 20kHz now hugely improved to -133 dBc per Hz.  It 

is noteworthy that in the world of RF, where designers are fighting for every dB, that we 

here have an example of noise improvement in a particular source of 30dB.  It illustrates 

that until quite recently PLL synthesizers were quite non-optimum in the area of noise.  

They are of course still not perfect, but huge improvements have been made.   

 

Another very useful result that easily follows from the 2nd order form relates to the 

frequency range over which the PLL stays in phase lock mode and settles quickly.  Best 

(Ref.15 p. 121) gives the pull-out range (for ζ < 1) for the 2nd order digital PLL with Phase-

Frequency type phase detector as: 

 

Equation 11:  𝜟𝒇𝒑𝒐 = 𝑵𝝎𝒏  𝒆𝒙𝒑 [
𝜻

√𝟏−𝜻𝟐
𝒕𝒂𝒏−𝟏(

√𝟏−𝜻𝟐

𝜻
)]  

 

The Phase-Frequency Detector (PFD), where the phase detector has a frequency detection 

mode as a back-up to force lock in the case of large frequency error, is the form used in 

almost all modern synthesizer IC’s.  This allows the loop to lock even when making large 

frequency changes that call the phase detector to “cycle slip” when phase error exceeds the 

dynamic range of the phase detector (usually +/-2𝜋).  The above equation gives the 

frequency change at the VCO output in Hz that would cause the phase detector to roll over 

into the slower frequency lock mode.  While slow, the frequency lock mode will usually 

converge, and as frequency comes into the pull-out range the PLL will enter phase lock 

mode and finish settling in a time inversely proportional to loop bandwidth.  
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This expression may be approximated by a curve fit as: 

 

Equation 12:  𝜟𝒇𝒑𝒐 = 𝟏. 𝟖𝟑𝟖𝑵𝝎𝒏(𝜻 + 𝟎. 𝟓) 

 

This approximation holds for damping factor less than or greater than 1, and is still 

approximately true for higher order loops if a dummy damping factor appropriate to the 

designed phase margin is used.  For phase margin of 45 degrees, a dummy damping factor 

of 0.5 is used in the above calculation.   

 

When lock range is exceeded, the PLL will be in a much slower to lock frequency lock 

mode, from which it will after “pull in time” Tp progress to a much faster phase lock mode.   

Best 5th edition (Ref. 15, page 7) gives the approximate pull in time Tp to be: 

 

Equation 13: 𝑻𝒑 ≈  
𝝅𝟐 ∆𝝎𝒐𝒖𝒕

𝟐

𝟏𝟔 𝜻 𝝎𝒏
𝟑  ≈  

𝟎.𝟏 ∆𝒇𝒐𝒖𝒕
𝟐

𝜻 𝒇𝒏
𝟑  

 

In the above equation Δfout is the frequency difference between the desired frequency and 

the starting frequency.  This formula can lead to unrealistically large pull in times in the 

case of large changes in frequency and narrowband loops.   

 

Introducing Modern Analysis Via the 2nd Order Form: 

 

In modern analysis the open loop transfer function is emphasized as opposed to the closed 

loop 2nd order functions given above, as open loop provides direct access to the stability in 

the presence of more filter poles that can cause instability.  Closed loop functions can also 

easily be found that are useful for noise transfer from various points in the loop to the VCO 

output.  Performing modern analysis on the 2nd order form will illustrate the process, and 

clearly show the relationship between the past method of analysis and the now dominant 

modern method.  It will also allow relating the loop parameters ωn and ζ of the second 

order form to the open loop bandwidth ωL and the phase margin ϕM of the modern form.  

The phase margin and loop BW will be key in designing higher order loops that can filter 

off phase detector spurs that the 2nd order loop would pass to the VCO input, which would 

in turn create noise sidebands.  

 

Figure 3 introduces the form of feedback system modeling that will first be used in 2nd 

order form and then extended to higher forms.   
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Figure 3: Simplest form of a feedback system.   

 

Note that the feedback function is labeled “H(s)”, which is in conflict with the 

nomenclature of the classic closed loop phase transfer function of earlier literature, but is 

in keeping with the modern literature.  It would have been more logical to call this 

something like “R(s)” for reverse feedback, but the convention of calling it H(s) is now 

well established, so we will follow it.   

 

We define total open loop gain as G(s)H(s).  A few lines of algebra will establish the 

basic feedback relationship: 

 

 

Equation 14:  
𝐕𝐨𝐮𝐭(𝐬)

𝐕𝐢𝐧(𝐬)
=

𝐆(𝐬)

𝟏+𝐆(𝐬)𝐇(𝐬)
 

 

In this equation the signals are listed as having units of voltage, but if the transfer 

functions apply to other variables then the same functional form can be used for any other 

variables.   In PLLs the variables used are normally phase, frequency, voltage, and 

current.  For example, the filter Z(s)  is in units of ohms and converts an input current to 

an output voltage.  Using  Equation 14, one can define the transfer from any driving point 

in a feedback system to any output point, and quickly write the closed loop transfer 

function.  When applied to PLL’s, these transfer functions inevitably end up being scaled 

versions of either the classical phase transfer or error transfer functions.   

 

Let us now extend this simple block diagram to a slightly more complex form to more 

clearly represent the PLL synthesizer.   

 

 

Forward Gain

G(s)

H(s)

Vin(s)
+

-

Vout(s)
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Figure 4: Simple feedback system extended to represent a 2nd order charge pump PLL 

synthesizer. Modern design emphasizes loop gain and phase as key parameters, and these 

parameters apply no matter how many poles of noise filtering are used. This figure 

provides a sound abstraction of PLL subsystems no matter how complicated they may 

internally become.  Note that the 1st order filter above leads to the 2nd order PLL due to 

the pole in the VCO in converting voltage to phase.    

 

In Figure 4, the forward gain G(s) is given by: 

 

 

Equation 15:  𝑮(𝒔) =  𝑲𝒅 𝒁𝒇(𝒔) 
𝑲𝒐

𝒔
  

 

A note on units is again worthwhile here as we work with these transfer functions.  

Technically, as noted above, the units of Kd are amps per 2𝜋 radians, so this number is 

obtained by dividing the selected value of charge pump current by 2𝜋.  The units of Ko 
are rad/sec per volt, which is obtained by multiplying datasheet values of KHz by 2𝜋.  
But, some authors (a key one being Banerjee) simply use the charge pump current 
for Kd and Hz/V for Ko.  When Kd is multiplied by Ko using these datasheet units, the 
same numeric answer results since the factors of 2𝜋 in the numerator of Ko and 
denominator of Kd cancel.    
 

The Open Loop Gain OL(s) is given by: 

 

Equation 16: 𝐎𝐋(𝐬) =  𝐆(𝐬)𝐇(𝐬) =  𝐊𝐝 𝐙𝐟(𝐬) 
𝐊𝐨

𝐬

𝟏

𝐍
 

 

Output Freq Div

H(s) = 1/N

+

-

1/R

Fout(s), 

θout(s)

Kd

R2

C2

Ipd

Vsteer

Ko/s

VCO
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Zf(s)
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This is a critical function for PLL analysis, as it captures both loop bandwidth and phase 

margin.  Phase margin is the remaining degrees above a full 360 deg phase shift around 

the loop at the frequency where the loop gain (a low pass function) drops to 1.0.  This 

frequency is referred to as loop bandwidth ωL.  

 

Since this function does not yet capture the negative inversion at the phase detector, the 

angle of this function adding 180 deg is the phase margin: 

 

Equation 17: 𝜽𝒎(𝝎𝑳) = 𝑨𝒏𝒈(𝑶𝑳(𝒔)) + 𝟏𝟖𝟎𝒅𝒆𝒈 

 

By virtue of Equation 14 above, we have the closed loop gain “CL(s)” commonly used in 

modern analysis from phase detector input phase to VCO output phase: 

 

Equation 18: 𝑪𝑳(𝒔) =
𝛉𝐨𝐮𝐭(𝐬)

𝛉𝐫(𝐬)
= 𝐆(𝐬)

𝟏+𝐆(𝐬)𝐇(𝐬)
 

 

When the first order filter is used as above, this is simply the 2nd order form of Hclassic(S) 

multiplied by N.  Thus for the 2nd order loop: 

 

Equation 19: 
𝐆(𝐬)𝐇(𝐬)

𝟏+𝐆(𝐬)𝐇(𝐬)
= 𝑯𝒄𝒍𝒂𝒔𝒔𝒊𝒄(𝒔) =

𝟐𝜻𝝎𝒏𝒔+𝝎𝒏
𝟐

𝒔𝟐+𝟐𝜻𝝎𝒏𝒔+𝝎𝒏
𝟐 

 

 

We may now find OL(s) of modern analysis using the 2nd order normalized parameters 

as: 

 

Equation 20:  𝑶𝑳(𝒔) =  𝐆(𝐬)𝐇(𝐬) =  
𝟐𝜻𝝎𝒏𝒔+𝝎𝒏

𝟐

𝒔𝟐  

 

Substituting s = jω: 

 

 

Equation 21:  𝑶𝑳(𝒋𝝎) =  
𝝎𝒏

𝟐+𝟐𝜻𝝎𝒏𝒋𝝎

−𝝎𝟐  

 

We can get the phase margin as the angle of this function + 180 deg: 

 

 

Equation 22:  𝛟𝐦(𝛚 = 𝛚𝐋) =  𝐭𝐚𝐧−𝟏(
𝟐𝛇𝛚𝐋

𝛚𝐧
) 

 

Of course, to apply this equation we need ωL.  Banerjee (Ref. 13, 3rd ed, p.119) gives this 

approximation, which will hold for about ζ > 0.4: 
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Equation 23:  
𝝎𝑳 

𝝎𝒏
=  

𝒇𝑳 

𝒇𝒏
 ≅ 𝟐𝜻 

 

If we solve for the frequency where the magnitude of OL(s) = 1 (ωL), we get a 4th order 

equation.  However, it is quadratic in “x” after a substitution x = ωL
2.  This lets us find 

the exact relation as: 

 

Equation 24: 
𝝎𝑳 

𝝎𝒏
=

𝒇𝑳 

𝒇𝒏
=  

𝟏

√𝟐
 √𝟒𝜻𝟐 + √𝟏𝟔𝜻𝟒 + 𝟏 

 

This equation is graphed in Figure 5, and the phase margin as a function of ζ in Figure 6.  

We note that ζ = 0.6 corresponds to phase margin of about 56 deg.   

 

 
Figure 5:  Ratio of 2nd order loop bandwidth to loop natural frequency as a function of 

damping factor ζ.  The bandwidth and natural frequency are equal for ζ ~ 0.42. 
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Figure 6:  Phase margin as a function of ζ in the 2nd order PLL.  This graph is seldom if 

ever given in references, and allows visualizing the available phase margin to sacrifice to 

higher order poles when using 2nd order analysis as a starting point.  For example, if a 2nd 

order starting point has damping factor of 1, we see that the phase margin of 76 deg 

allows us to spend 21 degrees on additional filtering and still have a loop phase margin of 

55 degrees.   

 

We may also find the error transfer function in terms of the general loop subsystems 

above as: 

 

Equation 25: 𝑯𝒆(𝒔) =
𝜽𝒓𝒆𝒇−(

𝜽𝒐𝒖𝒕
𝑵

)

𝜽𝒓𝒆𝒇
=  

𝟏

𝟏+𝑮𝑯
 

 

 

The 3rd Order Passive Filter PLL: 

 

This form is the simplest highly usable filter and is attained simply by paralleling the 

series RC filter shown above with another capacitor to convert it into a 2nd order filter, as 

shown in Figure 7.  But conceptually, this form takes us fully into modern analysis.   
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Figure 7:  The 3rd order PLL is attained by adding C1, but the implications of this simple 

change on loop analysis are significant.  

 

The reason the simple addition of one capacitor has such an effect is that it fundamentally 

alters the phase behavior of the loop.  The 2nd order loop has total phase shift approaching 

-360 deg at DC, but the zero introduced by R2 brings it back from that at higher frequencies.  

At the loop bandwidth the phase margin is typically 40 to 70 deg, and above the loop BW 

phase continues rolling positive towards -270deg.  But, introducing another filter pole will 

eventually cancel out the zero and take total phase lag back towards -360 deg.   

 

This means that there will be a frequency where phase peaks and then declines, as shown 

in Figure 8.  
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Figure 8:  Open loop gain and phase in the properly designed 3rd order PLL.  The 

maximum phase, the phase margin (when rotated 180 deg), occurs at the loop bandwidth.   

 

We now go through the analysis of the 3rd order PLL / 2nd order filter to establish the 

method that will also be used for the 4th and 5th order PLL that provide even better 

suppression of spurs from the digital phase detection process.   

 

The loop filter converts input current to an output voltage through its impedance, here 

given by: 

 

Equation 26:  𝒁(𝒔) =  
𝟏+𝒔𝑻𝟐

𝒔 𝑨𝟎(𝟏+𝒔𝑻𝟏)
 

 

 

Here T2 is the time constant that is the reciprocal of the zero frequency caused by R2 

working against C2, and T1 is the reciprocal of a pole introduced by C1.  A half page or so 

of circuit analysis will establish: 

 

Equation 27: 𝑻𝟐 =  𝑹𝟐𝑪𝟐 

 

Equation 28: 𝑻𝟏 =  
𝑹𝟐𝑪𝟐𝑪𝟏

𝑨𝟎
 

 

ωL

0 dB

Φp +180 = 

phase margin 

Magnitude Phase
Ideal 

placement of 

phase peak

OL gain

40dB/dec

20dB/dec

40dB/dec

ω2 ω1
(Zero) (Pole)
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Equation 29:  𝑨𝟎 =  𝑪𝟏 +  𝑪𝟐 
 

The open loop gain function is given by: 

 

Equation 30: 𝐆𝐇(𝐬) =  𝐊𝐝 𝐙𝐟(𝐬) 
𝐊𝐨

𝐬

𝟏

𝐍
=  

𝑲𝒅𝐊𝐨

𝑵
 

𝟏+𝒔𝑻𝟐

 𝒔𝟐𝑨𝟎(𝟏+𝒔𝑻𝟏)
 

 

Substituting s = jω: 

 

Equation 31: 𝐆𝐇(𝐣𝛚) =  
𝑲𝒅𝐊𝐨

−𝑵
 

𝟏+𝒋𝝎𝑻𝟐

 𝝎𝟐𝑨𝟎(𝟏+𝒋𝝎𝑻𝟏)
 

 

 

Note in the above equation we know Kd, Ko, and N.  We will choose loop bandwidth ωL 

and phase margin ϕm.  We wish to solve for A0, T1 and T2, and using them and the above 

equations then find R2, C2, and C1.   

 

To find our three system level unknowns A0, T1 and T2, we need three equations.  We get 

them by using the above equation to find the magnitude of GH (which is 1 at ωL), the 

phase of GH (which gives ϕm at ωL), and the derivative of the phase of GH with respect 

to ω (which is zero at ωL).  This is the basic methodology for finding component values 

referred to here as the modern technique (as opposed to closed loop 2nd order normalized 

form).   

 

The magnitude of GH is:  

 

Equation 32:  |𝑮𝑯(𝒋𝝎)| =  
𝑲𝒅𝐊

𝐨

𝑵𝑨𝟎𝝎𝟐  
√𝟏+𝝎𝟐𝑻𝟐

𝟐

√𝟏+𝝎𝟐𝑻𝟏
𝟐 

  

 

At ω = ωL this magnitude is 1, and we have: 

 

Equation 33:  𝑨𝟎 =  
𝑲𝒅𝐊𝐨

𝑵𝝎𝑳
𝟐  

√𝟏+𝝎𝑳
𝟐𝑻𝟐

𝟐

√𝟏+𝝎𝑳
𝟐𝑻𝟏

𝟐 

 

 

Now we’re down to needing T1 and T2.  The angle of GH is given by standard complex 

variable algebra.  Leaving off the 180 degrees to convert from phase to phase margin we 

get the maximum phase margin (at ωL) as: 

 

Equation 34: 𝝓𝒎 =  𝐭𝐚𝐧−𝟏(𝝎𝑳𝑻𝟐) − 𝐭𝐚𝐧−𝟏(𝝎𝑳𝑻𝟏) 

 

The derivative of the tan-1 function is given by:  
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Equation 35: 
𝒅(𝐭𝐚𝐧−𝟏 𝒖)

𝒅𝒙
=  

𝟏

𝟏+ 𝒖𝟐

𝒅𝒖

𝒅𝒙
 

 

Applying this with general frequency ω and setting it to zero at ω = ωL: 

 

Equation 36:  
𝑻𝟐

𝟏+ 𝝎𝑳
𝟐𝑻𝟐

𝟐 −  
𝑻𝟏

𝟏+ 𝝎𝑳
𝟐𝑻𝟏

𝟐  = 𝟎 

 

 

Now Equation 34 and Equation 36 give us two non-linear equations in the two unknowns 

T1 and T2.  We may expect we have to solve these numerically, and for higher order 

PLL’s we will get similar equations that do have to be solved either numerically or via 

approximations.  But, it turns out that in this particular case there is a closed form 

solution.  Keese gives it without proof in the commonly available Ref. 12 as: 

 

Equation 37: 𝑻𝟏 =  

𝟏

𝐜𝐨𝐬 𝝓𝒎
 − 𝐭𝐚𝐧 𝝓𝒎 

𝝎𝑳
  

 

Equation 38: 𝑻𝟐 =  
𝟏

  𝝎𝑳
𝟐 𝑻𝟏

  

 

This non-obvious solution is fully derived by Rohde (Ref. 9, pp. 32-36).  It takes about 

two pages of trigonometry and algebra to derive Equation 37, so it is not presented here.  

Equation 38 is easily derived in a few lines from Equation 36.  One interesting 

consequence of Equation 38 is that the loop bandwidth is the geometric mean of the zero 

and the pole: 

 

Equation 39:  𝝎𝑳 =  √𝝎𝟏 𝝎𝟐 

 

We’re almost done with this first look at the 3rd order loop.  All that’s left is to present 

Equation 27, Equation 28, and Equation 29 in terms of the circuit values we need.  These 

are: 

 

Equation 40:  𝑪𝟐 =  𝑨𝟎  (𝟏 −  
𝑻𝟏

𝑻𝟐
)  

 

Equation 41: 𝑪𝟏 =  𝑨𝟎 − 𝑪𝟐 

 

Equation 42: 𝑹𝟐 =  
𝑻𝟐

𝑪𝟐
 

 

The 2nd order filter and resulting 3rd order PLL are often adequate filtering of spurs for 

lower bandwidth loops, and is the lowest noise loop filter form for a given charge pump 
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current since it uses a single resistor.  However, pushing bandwidth out for faster lock 

times and to take maximum advantage of in-band noise suppression typically requires 

additional poles of filtering.  This is addressed next.   

 

The 4th Order Passive Filter PLL: 

 

This form uses the 3rd order filter shown in Figure 9. This is likely the most common 

filter form.   If an additional stage is added to create a 4th order filter, then the entire loop 

is referred to as 5th order.   

 

 
 

Figure 9:  The 4th and 5th order PLL forms.  4th follows from 3rd by adding an RC stage, 

and 5th from 4th by adding another stage.   

 

The analysis of this popular form follows the same method established for the 3rd order 

loop above.  However, it gets more complicated (though still perfectly manageable), 

since the added pole introduces 2 more components but only one additional constraint.  

For the 5 filter components values we end up with 4 equations. Banerjee introduces the 

constraint to maximize C3 using the first derivative test while still satisfying the other 

equations, which generates the necessary 5th equation.  This has the dual benefits of 

suppressing the effect of VCO input capacitance and minimizing the value and thus the 

thermal noise of R3.  To ease analysis and provide additional flexibility Banerjee has also 

extended the design method with a new variable he calls the “Gamma Optimization 

Factor” (explained below).   

 

Note that while we still refer to the “filter impedance”, in the 3rd order filter this is not 

strictly the input impedance seen by the charge pump current.  It is a “transfer 

impedance” of Vout/Iin from input current to the voltage delivered on the output of R3, at 

the steering input of the VCO.   
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We perform the analysis similarly to the 3rd order loop.  The open loop transfer function 

is given by: 

 

Equation 43:  𝐆𝐇(𝐣𝛚) =  
𝑲𝒅𝐊𝐨

−𝑵
 

𝟏+𝒋𝝎𝑻𝟐

 𝝎𝟐𝑨𝟎(𝟏+𝒋𝝎𝑻𝟏)(𝟏+𝒋𝝎𝑻𝟑)
 

 

The filter (transfer) impedance that is part of the above is given by:  

 

Equation 44:  𝒁(𝒔) =  
𝟏+𝒔𝑻𝟐

𝒔 𝑨𝟎(𝟏+𝒔𝑻𝟏)(𝟏+𝒔𝑻𝟑)
=  

𝟏+𝒔𝑪𝟐𝑹𝟐

𝒔 (𝑨𝟐 𝒔
𝟐+ 𝑨𝟏 𝒔+ 𝑨𝟎)

   

 

We note the now familiar “zero” time constant: 

 

Equation 45:  𝑻𝟐 =  𝑹𝟐𝑪𝟐 

 

In the above, the notation for the loop filter coefficients A1 and A2 is introduced, along 

with the familiar A0. These coefficients are useful terms as abbreviations for lengthy 

functions of parts values that come from multiplying out the time constants, and are 

handy for solving for component values.  They are given by: 

 

Equation 46: 𝑨𝟎 =  𝑪𝟏 +  𝑪𝟐 +  𝑪𝟑 

 

 

Using the magnitude function of the open loop transfer function (1 at loop BW): 

 

Equation 47: 𝑨𝟎 =  
𝑲𝒅𝐊𝐨

𝑵𝝎𝑳
𝟐  

√𝟏+𝝎𝑳
𝟐𝑻𝟐

𝟐

√(𝟏+𝝎𝑳
𝟐𝑻𝟏

𝟐)(𝟏+𝝎𝑳
𝟐𝑻𝟑

𝟐) 

  

 

We also find: 

 

Equation 48: 𝑨𝟏 =  𝑨𝟎(𝑻𝟏 +  𝑻𝟑) =  𝑪𝟐𝑪𝟑𝑹𝟐 + 𝑪𝟏𝑪𝟐𝑹𝟐 +
𝑪𝟏𝑪𝟑𝑹𝟑 +  𝑪𝟐𝑪𝟑𝑹𝟑 

 

 

Equation 49: 𝑨𝟐 =  𝑨𝟎𝑻𝟏𝑻𝟑 =  𝑪𝟏𝑪𝟐𝑪𝟑𝑹𝟐𝑹𝟑 

 

We next define what Banerjee calls “pole ratios”, which shall be selected by the designer 

based upon factors such as spur rejection.  Technically these would be properly referred 

to as time constant ratios, but we will stay with this now standard terminology.   

 

Equation 50:  𝑻𝟑𝟏 =  
𝑻𝟑

𝑻𝟏
=  

𝝎𝟏

𝝎𝟑
=  

𝒇𝟏

𝒇𝟑
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T31 is determining how spaced out the added pole is.  A T31 of 1 (ω3 = ω1) would give the 

maximum spur suppression, but overlying the ω1 pole leads to unrealizable circuit values. 

We must use T31 < 1.  A T31 of 0.62 (ω3 = 1.61ω1) will get within 0.5dB of max spur 

suppression, and T31 of 0.5 (ω3 = 2ω1) will get within 1dB (Ref 13, 5th ed, p.327).   

 

The phase margin of the open loop transfer function is given by: 

 

Equation 51: 𝝓𝒎 =  𝐭𝐚𝐧−𝟏(𝝎𝑳𝑻𝟐) − 𝐭𝐚𝐧−𝟏(𝝎𝑳𝑻𝟏) − 𝐭𝐚𝐧−𝟏(𝝎𝑳𝑻𝟑𝟏𝑻𝟏) 

 

Applying the first derivative test to find maximum phase margin with general frequency 

ω, and setting this derivative to zero at ω = ωL: 

 

Equation 52:  
𝑻𝟐

𝟏+ 𝝎𝑳
𝟐𝑻𝟐

𝟐 −  
𝑻𝟏

𝟏+ 𝝎𝑳
𝟐𝑻𝟏

𝟐 −
𝑻𝟑𝟏𝑻𝟏

𝟏+ 𝝎𝑳
𝟐𝑻𝟑𝟏

𝟐 𝑻𝟏
𝟐   = 𝟎 

 

After selecting the pole ratio T31, the above two equations may be solved numerically for 

T2 and T1, thus allowing T3=T31T1. 

 

Now we come to the “Gamma Optimization Factor”.  This quantity at first seems 

undefined other than as an approximation.  Recall for the 2nd order filter and 3rd order 

PLL:   

 

Equation 53: 𝑻𝟐 =  
𝟏

  𝝎𝑳
𝟐 𝑻𝟏

  

 

This may be extended in approximate form to higher order loops (Ref. 13, 5th ed, p.309): 

 

Equation 54: 𝑻𝟐 ≅  
𝟏

  𝝎𝑳
𝟐 (𝑻𝟏+𝑻𝟑+𝑻𝟒)

  

 

 

For the 3rd order filter and 4th order loop considered in this section, T4 = 0.   

 

This approximation is made more accurate introducing the gamma optimization factor, 

where we define γ as: 

 

Equation 55: 𝑻𝟐 =  
𝜸

  𝝎𝑳
𝟐 (𝑻𝟏+𝑻𝟑+𝑻𝟒)

=  
𝜸

  𝝎𝑳
𝟐 𝑻𝟏(𝟏+𝑻𝟑𝟏+𝑻𝟒𝟏)

  

 

This parameter is normally close to 1 in practical designs—in the range of 0.7 to 1.3.  

But, in addition to improving the accuracy of the approximation for T2, it also indicates 

the behavior of the loop designed using this approximation (Ref. 13, 5th ed, p.89):   

 

• If γ = 1, the phase peak occurs approximately at ωL.   
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• If γ < 1, the phase peak occurs above ωL.   

• If γ > 1, the phase peak occurs before ωL.   

 

There are optimization criteria where a γ not equal to 1 has value.  The 5th edition of 

Banerjee devotes a chapter to this subject.  For example, for a T31 of 60% that comes 

within 0.5 dB of maximum spur suppression, minimum lock time occurs at phase margin 

of 47 deg and a gamma of 1.14 (Ref. 13, 5th ed, p.318).    

 

Substituting Equation 55 (with T41=0) into Equation 51, we get this approximation:  

 

Equation 56: 𝝓𝒎 =  𝐭𝐚𝐧−𝟏 (
𝜸

  𝝎𝑳 𝑻𝟏(𝟏+𝑻𝟑𝟏+𝑻𝟒𝟏)
 ) −  𝐭𝐚𝐧−𝟏(𝝎𝑳𝑻𝟏) −

𝐭𝐚𝐧−𝟏(𝝎𝑳𝑻𝟑𝟏𝑻𝟏) 

 

The above has only T1 as an unknown.  It may be solved numerically, but an 

approximation can be found by using tan-1(x) ~ x for small x.  The result is: 

 

Equation 57: 𝑻𝟏 ≅  

𝟏

𝐜𝐨𝐬 𝝓𝒎
 − 𝐭𝐚𝐧 𝝓𝒎 

𝝎𝑳(𝟏+𝑻𝟑𝟏)
 

 

These two equations can be used for an approximate solution, or they can be used as 

starting points in the numerical solution to find exact values for T1 and T2.   

 

The other two time constants follow immediately.   

 

Equation 58:   𝑻𝟑 =  𝑻𝟏 𝑻𝟑𝟏    
 

And, when using the approximate approach: 

 

Equation 59: 𝑻𝟐 ≅  
𝜸

  𝝎𝑳
𝟐 (𝑻𝟏+𝑻𝟑)

  

 

We find A1 and A2 from: 

 

Equation 60: 𝑨𝟏 =  𝑨𝟎(𝑻𝟏 +  𝑻𝟑) =  𝑪𝟐𝑪𝟑𝑹𝟐 + 𝑪𝟏𝑪𝟐𝑹𝟐 +
𝑪𝟏𝑪𝟑𝑹𝟑 +  𝑪𝟐𝑪𝟑𝑹𝟑 

 

Equation 61: 𝑨𝟐 =  𝑨𝟎𝑻𝟏𝑻𝟑 =  𝑪𝟏𝑪𝟐𝑪𝟑𝑹𝟐𝑹𝟑 

 

Recall: 

 

Equation 62:  𝑻𝟐 =  𝑹𝟐𝑪𝟐 
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Now we are almost in position to pursue component values.  But, we only have the four 

equations to get the five values C1, C2, C3, R2, and R3.  The logical method adopted by 

Banerjee is to find the largest C3 that satisfies these four equations.  The equations just 

above may be manipulated to find C3 as a function of C1: 

 

Equation 63: 𝑪𝟑 =  
−𝑻𝟐

𝟐
𝑪𝟏

𝟐
+𝑻𝟐𝑨𝟏𝑪𝟏−𝑨𝟐𝑨𝟎

𝑻𝟐
𝟐

𝑪𝟏−𝑨𝟐

 

 

Applying the first derivative test for the value of C1 that peaks C3:  

 

Equation 64: 𝑪𝟏(𝒎𝒂𝒙 𝑪𝟑) =  
𝑨𝟐

𝑻𝟐
𝟐  (𝟏 +  √𝟏 +

𝑻𝟐 

𝑨𝟐
(𝑻𝟐𝑨𝟎 − 𝑨𝟏) ) 

 

Everything needed to find this C1 is known at this point, and it may be plugged into 

Equation 63 to find C3.   Then the final values are found from: 

 

Equation 65: 𝑪𝟐 =  𝑨𝟎 − 𝑪𝟏 −  𝑪𝟑 

 

 

Equation 66: 𝑹𝟐 =
𝑻𝟐

𝑪𝟐
  

 

Equation 67: 𝑹𝟑 =
𝑨𝟐

𝑪𝟏𝑪𝟑𝑻𝟐
 

 

Though this seems involved, it is actually a fairly simple procedure to go through once 

system requirements have allowed choosing the crystal reference, the VCO and thus Ko 

(frequency coverage and noise requirements dominate this) , the synthesizer chip and 

thus Id (the max available or close to it will normally be used), the particular N or range 

of N to be used, ωL, phase margin, T31, and gamma (quite often there is no reason to 

deviate from 1.0).   

 

Passive Filter 5th Order PLL’s: 

 

The passive 4th order filter form (see Figure 9) will be qualitatively discussed here, with 

the interested reader referred to Banerjee for more detail.  The addition of the extra RC 

stage provides moderate improvement in far out spur rejection over the 3rd order filter.  

Speaking very approximately, the benefit of the 3rd order loop filter over the 2nd is about 

2 to 7 dB, while the benefit of the 4th order filter over the 3rd is about 1-3 dB (Ref. 13, 5th 

ed, p.324).  Realizing the few dB benefit at very high frequencies can be difficult because 

high frequency spurs may be crosstalk limited rather than ideal filter transfer function 

limited.  Techniques for limiting crosstalk contamination will be presented in article 2.   
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However, in return for moderately better spur performance, it also introduces an 

additional resistor noise source in R4.  As this resistor is typically larger than R3 due to 

the need to not load the preceding stage, its noise contribution is usually larger.  For 

reasons to be presented in article 2, this noise is usually largest right around the loop 

bandwidth.  It is case by case as to whether this additional noise is worth the far-out spur 

suppression.   

 

Calculation of this case is quite involved.  The 5th order PLL has 7 loop filter values to be 

chosen, but only 5 PLL parameters.  As expected from the above, a logical constraint to 

apply is to maximize C4.  However, strict maximization is a complex procedure with no 

guarantee the rest of the parts are realizable.   

 

Banerjee recommends an approximate method instead (Ref. 13, 5th ed., pp.353-360).  

This method involves an algorithm for estimating a range of viable R3 and C1 from the 

methods shown for the 3rd order filter.   This simplifies the mathematics, and a candidate 

solution is found.  If further improvement seems possible, the solution is iterated with 

different R3 and C1 in the identified range.  There is no proof that solutions will always 

result in positive real component values, but if T31 + T43 < 1, then positive real values 

have been found in all cases tried.   

 

Op Amp Active Filter PLL’s: 

 

Op amps used to be standard practice in PLL loop filters to convert a voltage based phase 

detector output to a current.  Since the charge pump PLL established market dominance 

several decades ago, the primary reason for using an op amp has been to extend the 

voltage range of the loop filter to allow controlling VCO’s with large tune ranges.  This 

allows for lower Ko for any required frequency range, and for reasons that will be shown 

in article 2 it allows for lower induced noise on the VCO.  If a designer needs to improve 

upon the noise of the best integrated VCO synthesizers, the op amp based loop filter with 

high tune range discrete VCO will often be the method.   

 

Besides the noise benefit of low Ko, there are several additional benefits: 

• The noise of modern low noise op amps extends down to approximately 1nV per 

root Hz.  This is similar to the thermal noise in a 50 ohm resistor, so it is common 

for op amp noise to be a second order noise source.   

• The op amp allows decoupling of resistors in the loop filter, allowing  

o Lower value resistors with lower thermal noise.   

o Placing the lowest frequency pole after the op amp where it gets maximum 

noise filtering effect. 

o Simplification of the analysis, even in the 4th order filter case.   

 

There are several topologies for op amp based loop filters, but here a single preferred one 

will be presented (Figure 10), and given in full 4th order filter / 5th order loop form.  For 

this filter at least the 4th order form is recommended in order to minimize the effects of 

limited op amp bandwidth.  It may be that the optional 5th order form is needed in some 

cases, where an extra filter pole is used on the input side of the op amp.  The single filter 
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pole shown will convert charge pump current pulses to small ramps, but with modern 

IC’s these ramps are of short duration, on the order of 1ns.  An additional pole would 

convert the ramps to longer RC exponentials that may be selected to have their main 

frequency content within the bandwidth of the op amp.    

 

The basic method of component selection will be developed here using the pattern shown 

above, which will then be supplemented with methods based on avoiding limits of the 

charge pump and op amp.  Detailed noise analysis methods will be shown in article 2, op 

amp and other component trade-offs presented in article 3, and examples in article 4.   

 

 
Figure 10: Active 4th order filter and 5th order PLL, with option for 5th order filter and 6th 

order PLL.  Note that because of the inversion in the op amp, the position of the “+” and 

“-“ on the phase detector input have been switched to keep the correct sense of negative 

feedback.  Most synthesizers allow this to be programmed.  This filter is sometimes 

referred to as a “slow slew rate” active filter, as the input RC reduces the slew rate and 

bandwidth requirements on the op amp.  As it happens, C1 also reduces the slew rate 

requirement, as well as suppressing spurs from the ringing response of the op amp to 

charge pump pulses.  Slew rate requirements may be limited by judicious part value 

selection.  Still, meeting op amp bandwidth requirements may lead to putting an 

additional pole ahead of the op amp, as shown with the optional 2 pole input filter.      

 

Basic operation of this filter is as follows.  A DC reference voltage is provided at the 

positive input of the op amp, and the combination of loop action and op amp action will 

be to keep the negative input of the op amp at this same voltage.  This reference voltage 

H = 1/N

Fref(s), 

θref(s)

+

-
1/R Kd

Ipd
Vsteer

Ko/s

 θf = θout(s)/N

θr= θref(s)/R

G(s)

-

+

DC

R3

C3

R2 C2

C1

R4

C4

Zfor

Zback

Vref

VCO

R3A R3B

C3BC3A

Optional 2 pole 
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op amp input filter

Ipd

VC3 or 
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needs to be very low noise so as not to add noticeable noise to the loop filter (parts and 

methods will be covered in article 3).   

 

The charge pump current flows into the input filter stage, and according to the filtering R3 

and C3 flows through R2, C2, and C1 (the combination of which will be called Zfor) .  

Feedback action of the op amp is intended to keep the negative input fixed at the same 

voltage as the reference, so the negative input is a “virtual ground”.  If the virtual ground 

condition is achieved, it frees up the values of R3 and C3 in the sense that they are 

isolated from and do not interact with other poles.  However, op amp bandwidth limits in 

the case of a single pole prior to the op amp can cause error in this assumption.  The 

inverting input is really only a virtual ground for signals whose frequency content is 

restricted to be within the bandwidth of the op amp.   

 

It is often recommended that this input pole be the highest of the 3 poles so that better 

noise filtering is pushed forward in the filter.  However, there is sometimes reason based 

on noise performance and synthesizer and op amp limits to make the R3C3 pole the 

middle pole.  For example, one good reason is to better filter digital pulses presented to 

the inverting op amp input, even though doing so will associate the highest pole with C1 

and result in smaller C1.   

 

Note that while the relatively low reference voltage within the limits of the synthesizer 

charge pump is maintained on the op amp inputs, no such limit applies to the op amp 

output.  It will “pump up” via current flowing through Zfor to assume whatever voltage is 

needed to maintain lock.  Low noise op amps with supplies up to 36V are commonly 

available.  Furthermore, unlike the non-inverting form with gain, this inverting form can 

with proper design assume these higher tune voltages with very little noise gain applied 

to the rms sum of the reference voltage noise and op amp noise.   

 

The analysis to develop a design procedure begins similarly to the passive cases above.  

The 4th order filter case will be shown here.  For transfer impedance Z(f) we find: 

 

 

Equation 68: 𝒁(𝒔) =  
𝑽𝒐𝒖𝒕

𝑰𝒑𝒅
=

𝟏+𝒔𝑻𝟐

𝒔 𝑨𝟎(𝟏+𝒔𝑻𝟏)(𝟏+𝒔𝑻𝟑)(𝟏+𝒔𝑻𝟒)
  

 

An importance difference from the passive case is that we shall set the output filter pole 

of T4 to be the lowest frequency pole.  The other poles shall then be referenced to this 

pole in terms of spacing.   

 

We also find, due to the isolating effects of the op amp, that A0 is not the total sum of 

capacitance, but instead: 

 

Equation 69: 𝑨𝟎 =  𝑪𝟏 +  𝑪𝟐 

 

The open loop gain as a function of jω is: 
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Equation 70: 𝐆𝐇(𝐣𝛚) =  
𝑲𝒅𝐊𝐨

−𝑵
 

𝟏+𝒋𝝎𝑻𝟐

 𝝎𝟐𝑨𝟎(𝟏+𝒋𝝎𝑻𝟏)(𝟏+𝒋𝝎𝑻𝟑)(𝟏+𝒋𝝎𝑻𝟒)
 

 

 

Using the magnitude function of the open loop transfer function (1 at loop BW): 

 

Equation 71: 𝑨𝟎 =  
𝑲𝒅𝐊𝐨

𝑵𝝎𝑳
𝟐  

√𝟏+𝝎𝑳
𝟐𝑻𝟐

𝟐

√(𝟏+𝝎𝑳
𝟐𝑻𝟏

𝟐)(𝟏+𝝎𝑳
𝟐𝑻𝟑

𝟐)(𝟏+𝝎𝑳
𝟐𝑻𝟒

𝟐) 

  

 

Again, we are going to use T4 here as the lowest frequency pole.  We get T4 and T2 from 

the phase margin and derivative of phase margin relationships.  We get T1 and T3 from 

the pole ratios selected.  Most commonly these pole ratios are selected sequentially from 

the lowest pole to the next highest, and from that pole to the very highest.  For example, 

if f3 > f1, then T3 < T1 and it would be standard practice to use pole ratio T31 < 1 with T3 = 

T31T1.  But, in this case there are times it is advantageous to use f3 > f1 and others where 

f3 < f1.  So, in order to maintain one set of equations, we shall use the more general case 

where both higher frequency poles are references to the lowest pole f4.  Typically, these 

poles are spaced from each other by approximately factors of two.    

 

To evaluate A0 we need T4 and T2, and we then use the selected pole ratios to get T1 and 

T3.  The exact equations are: 

 

Equation 72: 𝝓𝒎 = 𝐭𝐚𝐧−𝟏(𝝎𝑳𝑻𝟐) − 𝐭𝐚𝐧−𝟏(𝝎𝑳𝑻𝟒) −
𝐭𝐚𝐧−𝟏(𝝎𝑳𝑻𝟏𝟒𝑻𝟒) −  𝐭𝐚𝐧−𝟏(𝝎𝑳𝑻𝟑𝟒𝑻𝟒) 

 

Applying the first derivative test with general frequency ω, and setting the derivative to 

zero at ω = ωL: 

 

Equation 73:  
𝑻𝟐

𝟏+ 𝝎𝑳
𝟐𝑻𝟐

𝟐 −  
𝑻𝟏

𝟏+ 𝝎𝑳
𝟐𝑻𝟒

𝟐 −
𝑻𝟏𝟒𝑻𝟒

𝟏+ 𝝎𝑳
𝟐𝑻𝟏𝟒

𝟐 𝑻𝟒
𝟐 −

𝑻𝟑𝟒𝑻𝟒

𝟏+ 𝝎𝑳
𝟐𝑻𝟑𝟒

𝟐 𝑻𝟒
𝟐   = 𝟎 

 

Now these two may be solved numerically for T2 and T4, leading then to T1 and T3 via 

the selected pole ratios.  The below approximations may be used as starting points for the 

numerical solutions, or used as is.   

 

Equation 74: 𝝓𝒎 =  𝐭𝐚𝐧−𝟏 (
𝜸

  𝝎𝑳 𝑻𝟒(𝟏+𝑻𝟏𝟒+𝑻𝟑𝟒)
 ) −  𝐭𝐚𝐧−𝟏(𝝎𝑳𝑻𝟒) −

𝐭𝐚𝐧−𝟏(𝝎𝑳𝑻𝟏𝟒𝑻𝟒) 𝐭𝐚𝐧−𝟏(𝝎𝑳𝑻𝟑𝟒𝑻𝟒) 

 

We may use γ = 1, or alter it from 1 based on the optimization criteria in Banerjee 5th ed, 

chapter 36.  The only variable remaining is T4, which may be solved numerically, or 

approximately from:   
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Equation 75: 𝑻𝟒 ≅  

𝟏

𝐜𝐨𝐬 𝝓𝒎
 − 𝐭𝐚𝐧 𝝓𝒎 

𝝎𝑳(𝟏+𝑻𝟏𝟒+𝑻𝟑𝟒)
 

 

 

If the full approximate form is used, then:  

 

Equation 76: 𝑻𝟐 ≅  
𝜸

  𝝎𝑳
𝟐 (𝑻𝟏+𝑻𝟑+𝑻𝟒)

  

 

In either exact or either of the approximate cases: 

 

 

Equation 77:   𝑻𝟏 =  𝑻𝟏𝟒 𝑻𝟒    
 

Equation 78:   𝑻𝟑 =  𝑻𝟑𝟒 𝑻𝟒    
 

We now have all the time constants needed to find A0 = C1 + C2 from the magnitude 

equation.  We may then find all the part values in Zfor from: 

 

Equation 79: 𝑪𝟏 =
𝑻𝟏𝑨𝟎

𝑻𝟐
 

 

Equation 80: 𝑪𝟐 =  𝑨𝟎 − 𝑪𝟏 

 

Equation 81: 𝑹𝟐 =
𝑻𝟐

𝑪𝟐
  

 

Now we come to selecting the values for R3, C3, R4, and C4. These seem easy to do 

because of the isolation provided by the op amp and having the time constants, but there 

are some subtle complexities at work here, and a need to deal with op amp limits.   

 

On the input side of the op amp it might seem that smaller R3 would help with noise, but 

actually the opposite is true.  The thermal noise of R3 is going up with its square root, 

whereas its noise gain is going down directly with R3, so that the noise contribution of R3 

at the output of the op amp is going down with its square root (equations deferred to 

article 2) as R3 increases.  So, we are led to wanting R3 as large as possible for noise 

reasons.  This is another reason for having f3 be the middle pole (the middle pole has 

larger RC) instead of the highest pole, along with the earlier stated reason of reducing the 

high frequency content the op amp is exposed to.   

 

But, there is another trade-off here, which is that for larger R3 is it possible for the 

average charge pump current in frequency acquisition mode to force the voltage on C3 

against the charge pump rail.  This would shut down the charge pump current and 

lengthen the frequency acquisition time.  This is particularly true when driving wide tune 
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range VCO’s (some as wide as an octave are available) that must move through a large 

frequency range.      

 

It’s not a hard analysis to get to some useful approximate design equations to trade noise 

against the potential for acquisition slowing (if these are published elsewhere, the author 

is not aware of it and apologizes for lack of referencing).  This will help designers avoid 

the situation of running into slow acquisition processes that are assumed to be simply the 

nature of the frequency lock settling mode, but may actually be more limited by the 

combination of charge pump and op amp limits.   

 

We begin the analysis on the input side of the op amp.  Banerjee gives (Ref. 13, 5th ed, 

p.38) the duty cycle of the phase-frequency detector in frequency lock mode as a function 

of the ratio of fref and fout/N as: 

 

Equation 82: 𝑫𝒄 = 𝟏 −  
𝒇𝒍𝒐𝒘𝒆𝒓

𝒇𝒖𝒑𝒑𝒆𝒓
 

 

In the above flower is the smaller of fref and fout/N.  Since most VCO’s do not steer far in a 

fractional sense from their center frequency, such that fref and fout/N are relatively close, 

the duty cycle would seldom range above 10% (octave type VCO’s being the exception). 

Dc will be largest at the beginning of the channel change or acquisition process, 

approaching zero as the VCO converges towards the desired frequency.  

 

Let us define ΔVmC3 as the max filtered voltage change from Vref that we wish to be 

imposed on C3 during a frequency lock acquisition event.  For example, if Vref = 2.4V 

(which we might use to stay in the common mode input range of a low noise op amp), 

with a charge pump supply of 3.3V, then we would probably not want the filtered voltage 

on C3 to rise above about 2.9V in order to not choke off the positive (source) charge 

pump.  In that case, ΔVmC3 would be 0.5V.  We may thus write a relationship for R3max 

as: 

Equation 83: 𝑹𝟑𝒎𝒂𝒙 =  
𝜟𝑽𝒎𝑪𝟑

𝑫𝒄𝑰𝒑𝒅
 

 

The designer may use R3 values up to R3max with the R3C3 pole as either the highest 

frequency pole or the middle pole.  We are trying to avoid R3 being too small because of 

noise gain in the op amp, where the noise gain relative to reference and op amp noise is: 

 

Equation 84: 𝑵𝒐𝒊𝒔𝒆𝑮𝒂𝒊𝒏𝟏(𝒔) = 𝟏 +  
𝒁𝒇𝒐𝒓(𝒔)

𝒁𝒃𝒂𝒄𝒌(𝒔)
 

 

For noise gain purposes, Zback is the series combination of R3 and C3 to ground.  The 

charge pump does not materially affect this impedance looking back from the op amp 

negative input because the pump is in a very high impedance off state most of the time, 

and even when on it is a high impedance current source.  The fact that the largest Dc is 

usually in the range of 0.05 to 0.1 helps with allowing a large enough R3 that Zback is >> 

than Zfor.  However, we have to be wary of Dc in the case of wide tuning VCO’s.  In that 
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case, we can program a large frequency change in smaller steps to avoid high Dc that can 

limit the size of R3.     

 

There are a set of slew rate requirements we need to consider, primarily in frequency lock 

acquisition mode for acquisition speed, and in phase lock mode for noise control.  There 

are two cases of each.  Banerjee offers experimental evidence (Ref. 13, 5th ed., pp.371-

372) that if the op amp is not fast enough in the phase lock mode there will be worsening 

of 1/f phase noise inside the loop bandwidth.  The “slow slew” active loop filter 

recommended here should reduce this effect.  If the standard form is insufficient, then 

splitting the input pole into two poles is likely to help.   

 

The worst case (highest) requirement on slew rate is during the frequency locking mode 

(when the phase detector is acting as a frequency detector) and where we may consider 

the loop to be acting at frequencies above the zero frequency f2 where Zfor is dominated 

by R2.  This will be the case for moderate frequency jumps where “cycle slipping” of the 

phase detector is of brief duration.  At the beginning of such a frequency acquisition 

process the phase detector duty cycle Dc is at a maximum and the phase/frequency 

detector current is charging C3 with a ramp that must be followed on the op amp output.  

As this ramp progresses, the current through R3 becomes significant and the ramp bends 

over (R3 has been selected as above to force this to happen), but the worst case we must 

account for is the beginning phase of the ramp up on C3.   So, this is fundamentally a 

situation where C3’s average voltage change is according to the average charge pump 

current, leading to a voltage ramp that is multiplied by the effective gain of the op amp 

circuit.  To keep the op amp locked with Vneg = Vplus, the op amp must slew according to 

the charge up and gain.  This gives: 

 

Equation 85:  𝑹𝒆𝒒𝑺𝒍𝒆𝒘𝑹𝒂𝒕𝒆𝑭𝑳𝑳(𝑹𝟐 𝒍𝒊𝒎𝒊𝒕𝒆𝒅)  ≅  
𝑫𝒄𝒎𝒂𝒙𝑰𝒑𝒅

𝑪𝟑

𝑹𝟐

𝑹𝟑
 

 

This slew requirement is reduced since for noise reasons we select R2/R3 < 1, but it can 

still be a fairly high slew rate requirement for low noise op amps and wide loop 

bandwidths with resulting small C3. If it cannot be met with the desired op amp, the result 

will be a slowing of the frequency lock process.   

 

There is another slew rate case for the frequency lock mode, which is the wide frequency 

acquisition mode that slowly occurs over a time that is much longer than T2. In this time 

interval C2 dominates Zfor, and the voltage on C3 ramps up and reaches its maximum of 

ΔVmC3 fairly early in the process. The remaining acquisition time is dominated by the 

current DcIpd flowing through R3 and then through C2 (C3 being assumed negligible).  

This leads directly to: 

 

Equation 86: 𝑹𝒆𝒒𝑺𝒍𝒆𝒘𝑹𝒂𝒕𝒆𝑭𝑳𝑳(𝑪𝟐 𝒍𝒊𝒎) ≅  
𝑫𝒄𝒎𝒂𝒙𝑰𝒑𝒅

𝑪𝟐
=  

𝜟𝑽𝒎𝑪𝟑

𝑹𝟑 𝑪𝟐
  

 

Since C2 > C3, and R2/R3 <1, this limit is usually much smaller than the R2 limit of FLL 

mode slew rate.  The only way it can be larger is if Dcmax in this mode is so much larger 
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that it makes up for those differences.  Furthermore, the loop that starts with wide 

frequency error and large Dc much eventually close its frequency error to the point that it 

enters the normally faster mode where the slew rate is dominated by R2. So, while this 

slew rate case is worth calculating, it will normally be the case that the R2 limited slew 

rate is larger and must be used for op amp selection.    

 

The phase lock mode establishes a different slew rate requirement, one where ideally we 

want the op amp output to follow the voltage change imposed on C3 during a charge 

pump on time interval.  Normally op amp bandwidth will not allow this to happen, but we 

may still select poles and parts so that slew rate is not a limit.  Since we are normally 

dealing with high frequency pulses, this desired behavior will usually be eased by the 

presence of C1, which reduces the forward impedance around the op amp in the 

frequency band of the pulses, and thus the closed loop gain of the op amp at high 

frequencies.  Let us consider R2 as effectively open at these frequencies (above f1), such 

that Zfor is dominated by C1. We have a situation where the charge pump current ramps 

up the voltage on C3 and the current in R3 similarly ramps according to IR3 = VC3/R3 (the 

drain through R3 being too small to affect the voltage on C3 over the narrow pulse width 

time).  Then over the interval of time from 0 to pulse width Tpd: 

 

Equation 87:  𝑰𝑹𝟑 ≅  
𝑰𝒑𝒅 𝒕 

𝑹𝟑𝑪𝟑
=  𝑰𝑪𝟏  

 

 

The voltage change on C1 over the pulse time is the same as the voltage change on the op 

amp output.  So: 

 

Equation 88: 𝑽𝒐𝒑𝒂𝒎𝒑 =  
𝟏

𝑪𝟏
 ∫ 𝑰 𝒅𝒕 ≅  

𝟏

𝑪𝟏
 ∫

𝑰𝒑𝒅 𝒕 

𝑹𝟑𝑪𝟑
𝒅𝒕 =  

𝑰𝒑𝒅 𝒕
𝟐 

𝟐𝑪𝟏𝑹𝟑𝑪𝟑
 

𝒕

𝟎
 

𝒕

𝟎
 

 

Now taking the derivative of this with respect to time, which establishes the desired slew 

rate: 

 

Equation 89:  
𝒅𝑽𝒐𝒑𝒂𝒎𝒑

𝒅𝒕
 ≅  

𝑰𝒑𝒅 𝒕 

𝑪𝟏𝑹𝟑𝑪𝟑
 

 

The desired slew rate of the op amp is changing over the pulse, but it reaches its 

maximum at the pulse width Tpd: 

 

Equation 90:  𝑹𝒆𝒒𝑺𝒍𝒆𝒘𝑹𝒂𝒕𝒆𝑷𝑳𝑳(𝒘𝒊𝒕𝒉 𝑪𝟏)  ≅  
𝑰𝒑𝒅 𝑻𝒑𝒅 

𝑪𝟏𝑹𝟑𝑪𝟑
 

  

This slew rate will normally be at least an order of magnitude less than that predicted in 

the frequency lock mode.  This reduction in the slew rate requirement for the PLL mode 

is one of the benefits of including C1 in the loop filter circuit.  If the FLL mode slew rate 

is not met, then even if the frequency acquisition is slowed, the op amp may still meet 
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this requirement and perform well in PLL mode.  Another benefit is that C1 will reduce 

the op amp ringing transient response to the pulses from the charge pump.  Even when 

the ringing in the op amp output is only in the range of a few hundred microvolts (typical 

if C1 is not used), and then filtered by the output RC filter, it can still induce very visible 

spurs at frequencies around the op amp bandwidth where this slight ringing occurs.  This 

will be discussed further in article 2 on noise.  

 

For completeness the PLL slew rate case where C1 is not used is given next.  During the 

pulse time the voltage on C3 is ramping at Ipd t / C3, and the slew rate must support this 

being gained by R2/R3:  

 

Equation 91:  𝑹𝒆𝒒𝑺𝒍𝒆𝒘𝑹𝒂𝒕𝒆𝑷𝑳𝑳(𝒏𝒐 𝑪𝟏) ≅  
𝑰𝒑𝒅  

𝑪𝟑

𝑹𝟐

𝑹𝟑
 

 

This is a much steeper slew rate requirement.  Taking the ratio of these two PLL mode 

slew rates: 

 

Equation 92:  
𝐒𝐥𝐞𝐰𝐑𝐚𝐭𝐞𝐏𝐋𝐋(𝐧𝐨 𝐂𝟏)

𝐒𝐥𝐞𝐰𝐑𝐚𝐭𝐞𝐏𝐋𝐋(𝐰𝐢𝐭𝐡 𝐂𝟏 )
 ≅  

𝐑𝟐𝐂𝟏  

𝐓𝐩𝐝
 

 

 

Normally R2C1 is much greater than the pulse width time on the order of 1E-9.  In 

practice the required slew rate increase without C1 can exceed one thousand.   

 

The alert reader will notice in the above slew rate presentation that op amp bandwidth 

was not mentioned.  Of course, slew rate is a partial surrogate for bandwidth, but the 

story told above is still incomplete.  Few op amps are going to actually be able to follow 

the voltage changes on C3 during a single pulse time—even when judicious pole and part 

selection and their slew rate allows them to, their bandwidth limits often will not.  Instead 

the change in op amp output (despite being damped by C1 and by opposite pulses 

partially canceling previous ones) occur over a period of time that is approximately 

1/Gbw, where Gbw is the gain-bandwidth product of the op amp. With modern synthesizers 

using very high phase detector frequencies, this will typically range from about 1 to 10 

phase detector periods. As pointed out by Banerjee, experimental evidence (Ref. 13, 5th 

ed., pp.371-372) indicates that the op amp not being fast enough can cause a several dB 

rise in the 1/f noise of the PLL due to pulse widening allowing through more charge 

pump 1/f noise.  The term “fast enough” encompasses both slew and bandwidth. 

 

The situation with op amp bandwidth possibly widening charge pump pulses is one that 

calls for greater investigation.  However, a logical step should a noticeable increase in 1/f 

noise be a concern with the 4th order active loop filter is to add another high frequency 

pole on the input side of the op amp.  By this it is meant to break the R3C3 pole into two 

poles, with a 5th order filter and a 6th order loop being the result.  The problem with the 

standard single pole on the op amp input is that the charge pump pulse is converted to a 

narrow ramp of voltage, which despite limited amplitude change is still a fast rise time on 

the order of 1ns.  An additional pole can covert this ramp to a much slower nearly 
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exponential shape. If this pole does not exceed 0.1 to 0.2 of the op amp GBW it can place 

the majority of frequency content inside the bandwidth of the op amp.  It should also 

further suppress spurs from the ringing response of the op amp to charge pump pulses 

(the op amp is being hit with smoothed inputs and not a sharper edged ramp).   

 

A brief summary of op amp bandwidth is appropriate here.  A common rule of thumb is 

for op amp GBW to be at least 10X PLL loop BW, as is typical of other op amp circuits.  

However, the author contends that in the case of the ultra-low noise synthesizer, this may 

be inadequate bandwidth due to the sampled nature of the modern PLL with its very 

narrow charge pump pulses.  Instead, we should consider op amp bandwidth in the 

context of the op amp successfully responding to the bandwidth of the filtered digital 

signals that reach its input.  Even the “slow slew” filter recommended here often suffers 

from failure to exactly follow the input signal when there is only a single RC stage 

preceding the op amp.  If it is desired to achieve the best 1/f noise and minimum spurs by 

avoiding pulse widening, the author recommends an additional input filter stage to slow 

the signals further to be within the bandwidth of the op amp selected.  The basic strategy 

may be described as selecting a rather fast low noise op amp, and then “cocooning” it 

within adequate filtering, such that the op amp is not expected to do more than its 

specifications dictate it can do.  Getting adequate filtering to protect the op amp may 

require reducing the PLL loop bandwidth below optimum for minimum jitter (to be 

covered in article 2), so there can be a trade-off here between better 1/f noise, and better 

noise around the loop bandwidth.   

 

Next, we consider the op amp limits on C4.  The possible issue here is normally the 

maximum output current of the op amp.  We are used to seeing DC load limits on op 

amps in the range of 500 ohms to 5k, and relatively low values of capacitance that can be 

directly driven without the op amp becoming unstable.  However, many op amps can 

drive loads of surprisingly small resistance isolating a large capacitor.  We find 10 ohms 

and even less is often not a problem to isolate capacitance of 1µF or more.  But, when we 

impose a large frequency change on the PLL, that large capacitance does take large 

current to change voltage quickly. The short term (before thermal limits take effect) 

upper current limit on op amps is usually in the range of 10mA to 100mA.  If we try to 

force an op amp in the FLL mode to exceed this, we will hit a maximum ramp rate on C4, 

and the slow frequency lock mode acquisition process will be slowed still further.   

 

Fundamentally, we desire the op amp max current Iopmax to be able to charge C4 at the 

same rate that Dc*Ipd charges C2.  Using I*t = C*V, a few lines will show:      

 

Equation 93: 𝑪𝟒𝒎𝒂𝒙 =  
𝑰𝒐𝒑𝒎𝒂𝒙𝑪𝟐

𝑫𝒄𝑰𝒑𝒅
 

 

This maximum is often more than we would like to use for reasons of size and cost, and 

in some cases it may lead to unreasonably small values of R4 that the op amp cannot 

drive.  In that case we usually select a value of R4 the op amp can drive whose thermal 

noise is still considerably less than the noise of the op amp, and then find C4 = T4/R4.  A 

possible consideration that could set a higher resistance on R4 is op amp thermal limits in 
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the case of many wide frequency changes in a short period of time, such as a frequency 

hopping spread spectrum system, that repeatedly charge and discharge C4 with large op 

amp currents.     

 

Summary:   

 

This first article out of four has introduced the subject of modern synthesizer design 

techniques to set the stage for the next three.   Moving forward, we will find ourselves 

witnessing a battle between synthesizer IC makers who provide on-die VCO’s and the 

providers of classic discrete VCO’s.  The discrete VCO providers have honed their art 

over a period of decades to provide very low noise VCO’s for use in the bands that 

demand that kind of performance.  Their out of loop bandwidth noise still sets the 

standard, sometimes by over 20dB, and is valuable for applications that demand that.  

But, the chip makers have mounted an asymmetric attack to offer a complete solution on 

one IC.  They have done some astonishing work to put surprisingly good VCO’s on the 

die, and followed that up with architectural steps that suppress noise in band to a greater 

degree than is possible with current lower frequency discrete VCO’s.  This is supported 

by steadily increasing availability and falling prices of high speed, high accuracy, and 

low noise crystal reference oscillators, with 100MHz becoming a recent standard that the 

latest chips can take full advantage of.   

 

To maintain their noise advantage at all offset frequencies, discrete VCO manufacturers 

will need to provide higher VCO frequencies with similar normalized phase noise 

performance as their better low frequency application band VCO’s.  This would allow 

them to take advantage of the latest synthesizer innovations based on high VCO 

frequency to match or beat the in-band noise performance of the integrated competition.  

The high frequency VCO output is then divided down to the application band, picking up 

6dB of phase noise improvement for every divide by two, just as in done for the 

integrated VCO’s.     

 

Article 2 will delve into these noise issues in greater depth.  Article 3 will review the 

components and tools now available to the designer, with particular emphasis on the 

noise performance of the parts.  Article 4 will then put all that information into example 

form for several different applications that demand the finest noise performance.   
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